Functionality and occupational analysis of a 3D-printed body-powered upper-limb prosthesis prototype for children and adolescents

A multiple-case study

Authors

DOI:

https://doi.org/10.25214/25907816.1967

Keywords:

arm prosthesis, Occupational Therapy, 3D printing

Abstract

In Colombia, socio-economic barriers disproportionately limit children and adolescents’ access to prosthetic devices. The functionality and potential everyday occupational uses of a low-cost, 3D-printed body-powered upper-limb prosthesis for children and adolescents with congenital limb absence are explored. A multiple-case study was employed within a mixed-methods exploratory sequential design. Four people who had received the prosthesis six weeks earlier, without prior training, were evaluated through direct observation, the Jebsen-Taylor Hand Function Test, and the University of New Brunswick Test of Prosthetic Function. While the prosthesis improved functional grasp patterns and bimanual activity participation, task execution times were prolonged, and spontaneous use was inconsistent. Interaction with the prosthesis was mainly in gross motor tasks. The need for optimized prosthetic design and structured occupational therapy interventions, including prescription, training, and follow-up, is highlighted. The importance of integrating rehabilitation strategies with assistive technology to enhance functional independence and occupational participation in pediatric prosthesis users is emphasized.

Downloads

Download data is not yet available.

References

Abbady, H. E., Klinkenberg, E., de Moel, L., Nicolai, N., van der Stelt, M., Verhulst, A. C., Maal, T., & Browers, L. (2022). 3D-printed prostheses in developing countries: A systematic review. Prosthetics and Orthotics International, 46(1), 19-30, https://doi.org/10.1097/PXR.0000000000000057

Ardon, M. S., Janssen, W. G., Hovio, S. E., Stam, H., Murawska, M., Roebroeck, M. E., & Selles R. W. (2014). Relationships among manual body functions, manual capacity, and bimanual performance using the prosthetic upper extremity functional index in children with congenital hand differences. Physical Therapy & Rehabilitation Journal, 94(6), 767-775. https://doi.org/10.2522/ptj.20130209

Arias, L. A. (2012). Biomecánica y patrones funcionales de la mano [Biomechanics and Functional Patterns of the Hand]. Morfolia, 4(1), 14-24. https://revistas.unal.edu.co/index.php/morfolia/article/view/31373/31379

Berger, M., Gronski, M., & Foreman, M. (2022). A preprinting protocol for designing a 3D-printed prosthesis for a young child with an upper extremity difference. The American Journal of Occupational Therapy, 76(1), https://doi.org/10.5014/ajot.2022.76S1-PO10

Beagley, S. B., Reedman, S. E., Sakzewski, L. & Boyd, R. N. (2015). Establishing Australian norms for the Jebsen Taylor Test of Hand Function in typically developing children aged five to 10 years: A Pilot study. Physical & Occupational Therapy in Pediatrics, 36(1), https://doi.org/10.3109/01942638.2015.1040571

Biddiss, E., & Chau, T. (2007). Upper-limb prosthetics: critical factors in device abandonment.American Journal of Physical Medicine & Rehabilitation, 86(12), 977–987. https://doi.org/10.1097/PHM.0b013e3181587f6c

Botelho, F. (2021). Childhood and assistive technology: Growing with opportunity, developing with technology. Assistive Technology, 33(1), 87-93, https://doi.org/10.1080/10400435.2021.1971330

Buffart, L. M., Roebroeck, M. E., Pesch-Batenburg, J. M., Janssen, W. G., & Stam, H. J. (2006). Assessment of arm/hand functioning in children with a congenital transverse or longitudinal reduction deficiency of the upper limb. Disability and Rehabilitation, 28(2), 85 -95. https://doi.org/10.1080/09638280500158406

Gama, E. N., Avilés, O. F., y Amaya, D. (2014). Anthropomorphic robotic hands: a review. Ingeniería y Desarrollo, 32(2), 279–313.

Heinemann, A. W., Connelly, L., Ehrlich-Jones, L., & Fatone, S. (2014). Outcome instruments for prosthetics: clinical applications. Physical Medicine and Rehabilitation Clinics of North America, 25(1), 179–198. https://doi.org/10.1016/j.pmr.2013.09.002

Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación (6.ª ed.). McGraw-Hill Education.

Instituto Nacional de Salud. (2024). Protocolo de vigilancia en salud pública de defectos congénitos (versión 7). https://doi.org/10.33610/BAQX9645

Jacobs, M. A., & Austin, N. M. (2014). Orthotic intervention for the hand and upper extremity: Splinting principles and process. Wolters Kluwer Health.

Jebsen, R. H., Taylor, N., Trieschmann, R. B., Trotter, M. J., & Howard, L. A. (1969). An objective and standardized test of hand function. Archives of Physical Medicine and Rehabilitation, 50(6), 311–319. https://www.ncbi.nlm.nih.gov/pubmed/5788487

Jiménez-Canizales, C. E., Alzate-Carvajal, V., Valencia, J. E., Marín-Loaiza, S., Alarcón-Z , J. N., William, J. & Rodríguez-Morales, A. J. (2013). Characterization of congenital anomalies of the upper limb in an institution providing health services in Ibagué, Tolima, Colombia. Archivos Venezolanos de Puericultura y Pediatría, 76(1), 5-11. http://ve.scielo.org/pdf/avpp/v76n1/art03.pdf

Kapandji, A. I. (2006). Fisiología articular: Tomo uno – Miembro superior. [The physiology of the joints: Volume one – Upper Limb]. (6th ed.). Editorial Médica Panamericana.

Kate, J. T., Smit, G., & Breedveld, P. (2017). 3D-printed upper limb prostheses: a review. Disability and Rehabilitation: Assistive Technology, 12(3), 300-314. https://doi.org/10.1080/17483107.2016.1253117

Keenan, D. D., & Glover, J. S. (2013). Amputations and prosthetics. In H. McHugh & W. Schultz-Krohn, (Eds.), Pedretti´s Occupational Therapy: practice skills for physical dysfunction, (1149–1193). Elsevier.

Leite, M., Soares, B., Lopes, V., Santos, S., & Silva, M. T. (2019). Design for personalized medicine in orthotics and prosthetics. Procedia CIRP, 84, 457–461. https://doi.org/10.1016/j.procir.2019.04.254

Manero, A., Sparkman, J., Dombrowski, M., Smith, P., Senthil, P., Smith, S., Rivera, V., & Chi, A. (2023). Evolving 3D-printing strategies for structural and cosmetic components in upper limb prosthesis. Prosthesis, 5(1), 167–181. https://doi.org/10.3390/prosthesis5010013

Manocchio, N., Gaudenzi, M., Tofani, M., Ljoka, C., Imeshtari, A., Giordani, L., Della Bella, G. & Foti, C. (2024). Functional impact of early prosthetic implantation in children with upper limb agenesis or amputation. Applied Sciences, 14(16), 7259. https://doi.org/10.3390/app14167259

McCarter, J., Zeledon, R., Cole, S., Layon, S., & Nguyen, J. (2023). Common pediatric hand anomalies. Seminars in Plastic Surgery, 37, 275-286. https://doi.org/10.1055/s-0043-1777096

Meurs, M., Maathuis, C. G., Lucas, C., Hadders-Algra, M., & van der Sluis, C. K. (2006). Prescription of the first prosthesis and later use in children with congenital unilateral upper limb deficiency: A systematic review. Prosthetics and Orthotics International, 30(2), 165-173. https://doi.org/10.1080/03093640600731710

Ministerio de Trabajo de Colombia [Min Trabajo]. (2024, 24 de diciembre). Salario mínimo para 2025. https://www.mintrabajo.gov.co/presidente-decreto-salario-minimo-para-2025-quedo-en-1.623.500-incluido-auxilio-de-transporte%22%20/l%20%22:~:text=El%20incremento%20se%20fij%C3%B3%20en,000%20a%20$1.423

Muñoz, C. F. (2025, 1 de enero). Incremento del salario mínimo en Colombia 2025. https://consultorsalud.com/incremento-del-salario-minimo-en-colombia-2025-lo-que-necesita-saber/#:~:text=El%20salario%20m%C3%ADnimo%20legal%20mensual,adicional%20de%20$200.000%2C%20totalizando%20$1.623.

Norkin, C. C., & White, D. J. (2006). Goniometría: evaluación de la movilidad articular [Goniometry: evaluation of joint mobility]. Marbán Libros, S.L.

Piscitelli, D., Beghi, M., Bigoni, M., Diotti, S., Perin, C., Peroni, F., Turati, M., Zanchi, N., Mazzucchelli, M., & Cornaggia, C. M. (2021). Prosthesis rejection in individuals with limb amputation: a narrative review with respect to rehabilitation. Rivista di Psichiatria, 56(4), 175-181. https://doi.org/10.1708/3654.36344

Plettenburg, D. H. (2006). The Wilmer appealing prehensor. Journal of Prosthetics and Orthotics, 18(2), 43–45. https://journals.lww.com/jpojournal/Fulltext/2006/04000/The_WILMER_Appealing_Prehensor.5.aspx

Resnik, L., Baxter, K., Borgia, M., & Mathewson, K. (2013). Is the UNB test reliable and valid for use with adults with upper limb amputation? Journal of Hand Therapy, 26(4), 353–359. http://doi:10.1016/j.jht.2013.06.004

Resnik, L., & Borgia, M. (2014). Responsiveness of outcome measures for upper limb prosthetic rehabilitation. Prosthetics and Orthotics International, 40(1), 96–108. http://doi:10.1177/0309364614554032

Ribeiro, D., Cimino, S. R., Mayo, A. L., Ratto, M., & Hitzig, S. L. (2019). 3D printing and amputation: a scoping review. Disability and Rehabilitation: Assistive Technology, 16(2), 221-240. https://doi.org/10.1080/17483107.2019.1646825

Salinas, F., Lugo, L. H., & Restrepo, R. (2008). Rehabilitación en salud [Health Rehabilitation]. Editorial Universidad de Antioquia.

Sanderson, E. R., & Scott, R. N. (1985). UNB Test of prosthetic function. The Bio-Engineering Institute, University of New Brunswick. https://limbclinic.com/unb-prosthetic-test.php

Satriawan, A., Trusaji, W., Irianto, D., Anshori, I., Setianingsih, C., Nurtriandari, E., & Goesasi, R. Z. (2023). Karla: A Simple and affordable 3-D printed body-powered prosthetic hand with versatile gripping technology. Designs, 7(2), 37, https://doi.org/10.3390/designs7020037

Sims, T., Donovan-Hall, M., Metcalf, C. (2019). Children’s and adolescents’ views on upper limb prostheses in relation to their daily occupations. British Journal of Occupational Therapy, 83(4), 1–9. https://doi.org/10.1177/0308022619865179

Skirven, T. M., Osterman, A. L., Fedorczyk, J. M., & Amadio, P. C. (2011). Rehabilitation of the hand and upper extremity. Elsevier.

Thomas, A., & Muñecas, T. (2023). A rehabilitation protocol for the use of a 3D-printed prosthetic hand in pediatrics: A case report. Journal of Hand Therapy. 36(4), 967-973 https://doi.org/10.1016/j.jht.2022.10.010

Vasluian, E., Van Wijk, I., Dijkstra, P. U., Reinders-Messelink, H. A., & van der Sluis, C. K. (2015). Adaptive devices in young people with upper limb reduction deficiencies: use and satisfaction. Journal of Rehabilitation Medicine, 47(4), 346–355 https://doi.org/10.2340/16501977-1922.

Zuñiga, J. M., Carson, A. M., Peck, J. M., Kalina, T., Srivastava, R. M., & Peck, K. (2016). The development of a low-cost three-dimensional printed shoulder, arm, and hand prostheses for children. Prosthetics and Orthotics International, 41(2), 205-209. https://doi.org/10.1177/0309364616640947

Zuñiga, J. M., Peck, J. L., Srivastava, R., Pierce, J. E., Dudley, D. R., Than, N. A. & Stergiou, N. (2017). Functional changes through the usage of 3D-printed transitional prostheses in children. Disability and Rehabilitation: Assistive Technology, 14(1), 68–74. https://doi.org/10.1080/17483107.2017.1398279

Published

2025-07-30

How to Cite

Wiesner Luna, V., & Olarte Arias, Y. A. (2025). Functionality and occupational analysis of a 3D-printed body-powered upper-limb prosthesis prototype for children and adolescents: A multiple-case study. Human Occupation Journal, 25(2), 155–189. https://doi.org/10.25214/25907816.1967

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo
QR Code

Some similar items: